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Dynamical epidemic suppression using stochastic prediction and control
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We consider the effects of noise on a model of epidemic outbreaks, where the outbreaks appear randomly.
Using a constructive transition approach that predicts large outbreaks prior to their occurrence, we derive an
adaptive control scheme that prevents large outbreaks from occurring. The theory is applicable to a wide range
of stochastic processes with underlying deterministic structure.
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I. INTRODUCTION noise. The techniques introduced here may also be applied to

Recently, there has been much research of steady stageneral stochastic nonautonomous systems of the form

epidemics in random populatiori4] and their control[2]. dx
Nonequilibrium diseases, in contrast, are those diseases ex- — =G(x,t) + 5(t), (1)
hibiting outbreaks that fluctuate in time. Childhofj4] and dt
tropical disease5,6] are a few examples of outbreaks hav- yhereG(x,t)=G(x,t+1), and the noise is added periodically
ing strong annual oscillations with random amplitude. In\ith the period of drive, i.e.,
modeling the annual incidence of infections, random compo-
nents from the environment and/or populations play a sig- nt) =7, A(t-n),n=1,2, ..., (2
nificant role[7,8]. While excellent data from seasonally fluc-
tuating diseases illustrate strong annual oscillations wit
random peak outbreaks in the infectiofs9], models and : ) ! .
data analysis reveal that outbreaks stem from stochastic peg-y nam!cslas a discrete-time constantly perturbed stochastic
turbations in either population or epidemic parameters, mak2ynamica system.
ing deterministic prediction difficult. Il. A STOCHASTIC EPIDEMIC MODEL

Predictability of seasonally driven diseases that are sto-
chastic is necessary for the application of methods to sup- A standard system used to study and predict the stochastic
press future outbreaks. Many vaccine schemes are availabilynamics of disease epidemics is based on a simplified re-
for equilibrium disease§3,10], but in the case of nonequi- duced version of the well-known SEI®Refined belowcom-
librium outbreaks, current methods may enhance outbreaksartmental mode]7,9,14, known as the modified SI model
or fail to achieve their goalgl1,12. (Similar problems arise [17]. In deterministic settings, the system has been exploited
in the large fluctuation theory of stochastic dynamical systo model single and coupled patch populati¢h8], as well
tems[13].) Other methods pulse the population without sam-as testing vaccine strategigs4,19. Assume that the popu-
pling for prediction[14], or they rely on reducing spread via lation is sufficiently large so that the various subgroups are
mean threshold reductidB]. To address the problem of sup- assumed to be continuous. The population dynamics is de-
pressing outbreaks in stochastic epidemics, we apply a matlscribed by susceptibl&(t); exposed, but not yet infectious,
ematical method15] to a stochastic model to predict out- E(t); infectivel(t). The recoveredR(t) class in the model can
breaks before they occur, and then adapt a vaccine strate@gye derived from model results sin@+E+1+R=1 [17].
which prevents the outbreak from occurring. The theory ex- Seasonality is input into the model via the contact rate,
ploits a transition probability description from small ampli- 8(t), so we let B(t)=8,(1+6 cos 2rt), where O<é5<1.
tude incidence to outbreak dynamics, and generates a regi@ther parameters used to quantify the dynamics are a scep-
of high probability transport of the most sensitive regions totible input ratex (which includes the birth rate, as well as a
stochastic effects. Moreover, it allows us to monitor I’egionspossible fixed vaccine contiplthe mean latent periodfly
of stochastic dynamics that have a high probability of pre-and the infectious periody ~%. The full deterministic rate
ceding a large outbreak, which in turn leads to a design of quations are given by
vaccine control strategy to suppress outbreaks. We thus argue
a general simple, but effective, control technique that takes dasy _ _ _

. . . . = u[1+h(t)] - Bt)SI- uS,

advantage of complicated interactions of determinism and dt

hA is the Dirac delta function, ang, is now a discrete ran-
dom variable. The form of Eql) allows us to consider the
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whereh(t) is a small perturbation used for vaccination. That 0 1000 2000 3000 4000 5000
is, whenh(t) is negative, the input of susceptibles into the time

system '_S reduced. S'”‘%e it will be designed to be adap.tlve FIG. 1. This is an uncontrolled time series of the fraction of
stochastic controlh(t) will also depend on the state vari- iyfaciivesi for the MSI model under random forcing in Eqd) and
ables. o . . (5). The parameters are given in the text. Inset: Note the siBA)

For realistic childhood disease parameters chosen hergeriod 2 and largéLA) period 3 amplitude oscillations of the un-
theoretical[20] and numerical analysigl7] show that for  derlying bistable deterministic system. No chaos is present when
almost all cases, the infective and exposed population follow,(t)=0, and the system only exhibits periodic SA or LA
each other in time to first order, leading to a reduction whichoscillations.
describes a modified SI mod@VSI), given by

ds(t) ther phenomenon could not create on their own.
at = u[1+h(t)] - uSt) - BH)I(H)S1), Notice that in the absence of any stochastic fluctuations
t [5(t)=0], the system will settle down to one of two periodic
(4)  solutions. The two stable solutions are plotted in the Fig. 1
iy - (L>,8(t)l(t)8(t) —(u+ a)l(b). inset. The period 2 cycle has a small amplity@\) while
dt u+y the period 3 cycle is of large amplitudeA). However, as

seen from the time series in the figure, outbreaks, which
_ _ _ — = occur due to stochastic fluctuations, may have enhanced am-
_0'0.2’“_1/0'0279’7_1/0'01”80_1575’ and§-0.095,_and plitudes by almost an order of magnitude over the period 3
are fixed throughout the paper. Here, the paramtgris a cycle

time-dependent vaccine control whose value we will calcu- Although the system is stochastic, its dynamics may be

lzét(% altzlte;ptlvely, and depends on the phase space location alfjantified in terms of Lyapunov exponents by spatial inte-

( F’II )‘. he di ed hasi del | gration against the invariant dens[82]. For the parameters
ollowing the discretized stochastic model in &), we ;5o to generate the time series in Fig. 1, we compute the

strobe the system with period-1 to create a Poincaré ma?.yapunov exponents, and find them to he=0.1638 and
Without loss of generality, we define a discrete stochasti(‘xzz_o_4853_ These ,values together with thé evidence of

model for the purposes of this papl]. Using a discrete early intersecting stable and unstable manif¢Rl, indi-

stochasth map app_roach will allow us to make C?fef”' aNGate a completed horseshoe dynamics under the influence of
accurate mterpretatl.ons in tgrms of_ te&t), 1(t)) vanab!es, the noise, described as stochastic cH@os5. However, the
as well as to examine the interaction of the dynamics andmnpieted horseshoe dynamics, indicative of chaos in deter-
control with the underlying topology of the system. We con-ministic systems, is a geometric way of thinking about the
sider the uncontrolled stochastic systéh=0) as a tWo- jnteraction of noise and the underlying manifold structure of
dimensional may- of a regionD into itself the deterministic part. The chaotic-looking dynamics are the
(S(t+1) =F[(SHO]+ 7(t), (5) result of mixi_ng two stable attractors, vy_hile sampling un-
stable dynamics between them. The positive Lyapunov expo-
where 7 is a two-dimensional random variable having a nor-nent is therefore a way of measuring contributions to the
mal distribution given byu(x):e‘(XTE_lx)’Z/(2w||E||1/2), with  stochastic attractor of dynamics tracking near unstable mani-
> =diag (), and we choose the standard deviation tosbe folds. The fraction of time spent near the unstable manifolds,
=0.035. Since the two-dimensional deterministic system hags Well as the transition probabilities of the dynamics switch-
an attractor with unequally-sized components, the noise anifg from small to large amplitude behavior may be explained
plitude is scaled so that it is defined on the unit squarePy taking a dynamic probabilistic approach, which we sketch
Because the standard deviation is based on the rescaled dyiefly. A full mathematical description is given [d15].
ordinates, it is small compared to the attractor size and is
smaller than the modulation component of the contact rate in
Eq. (4). A typical time series of thé component is shown in
Fig. 1. Notice the frequent aperiodic bursts, which for the
chosen parameters of the deterministic part of the model, Eqg. If the noise is continuous, we can compute the evolution
(4), would not occur were it not for the random perturbationsof the probability density using a Fokker-Planck approach
in Eq. (5); the deterministic and stochastic parts interact in g24]. However, since the approach is one of discrete noise as
fundamental way to create complicated oscillations that eiin Eqg. (1), we evolve the densities discretely as well. That is,

The parameters used for measles da@ are given byu

Ill. DISCRETE STOCHASTIC DYNAMICS AND
TRANSITION PROBABILITIES
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since the solution to the periodically driven is computed ev+egion is solely due to the interaction of the noise and the
ery period to form the discrete map, we do the same with thglobal topology of the underlying deterministic dynamics.
density.
We assume the noise comes from a distributigr). The IV. ACTIVE CO(')\‘JTR;RLEiiSSTOCHAST'C
evolution of an initial probability density functioGPDP),
p:DCR?—R, is defined by the stochastic Frobenius-Perron For deterministic systems, normal methods of vaccine
operator{15] Pg:LY(R?) —LY(R?), given by control will reduce the input rate of susceptibles. The value
of h is usually computed so that at equilibriumo seasonal
forcing, or 6=0), the net rate of production of infectives in
Pe(p(X)) :f v[X=F(y)]p(y)dy. (6)  one infectious period is less than unity. Under these condi-
D tions, the disease will die out. However, control of small

The density is invariant if it is a fixed point of the operator. amplitude oscillations in the periodically driven case can be

This approach allows an approximation of the probabilisticdone: but the disease will pers|g].

wransitons of one part ofphase space to anoftfas well ottt SR IR D e in Fig. 3, we
as the invariant densitj25]. y P - g.3,

- i . see a direct comparison of constant vaccine control and no
To compute the transition probabilities from one region of

h N h di tize th i@t ph control. Notice that although the mean level of outbreaks
phase space 1o another, we discretize the reQiosf phase appear to be reduced, the large fluctuations are greater than
space. Specifically, we assume there exists a cover of t

ithout control. Therefore, constant vaccine control, al-

regionD by disjoint setsS;, though sometimes the only guide, may increase the size of
N large outbreaks. Therefore, it is natural to try to sample and

D=UB,. (7) control discretelywhen considering stochastic outbreaks.

i=1 Vaccine activation using a variabledepends on finding

the regions where an outbreak is most likely upon the next

Defining the set of characteristic basis functions, iteration. These are points of the trajectory generated by Eq.

1 xeB (5) in the SA basin that precede iterates in the LA basin.
G =xg () =1 ' (8)  Although we compute conditional outbreaks from the spatial
' 0, x¢B averages using the transition matrix, this is verified tempo-

1raIIy. Using an uncontrolled stochastic time series of 50 000
iterates, and checking in which bag®A or LA) each iterate
is located, we show in Fig. 4 the most likely preoutbreak
regions. In comparison to Fig. 2, the spatial average predicts
similar transport regions of high conditional probability of
M;,; =J Pr(4i(X)) g (x)dx. (9)  the SA-LA transition.
D We now define a bull's ey¢BE) region to be an open
Therefore, Eq(9) yields the probability of transporting mass ¢onnected neighborhood having high probability of transi-
from box B; to B.. tion from S_A to LA outbreak;. The _BE region, for_ a c_hos_en
! i.threshold, is clearly shown in red in Fig. 2. Distinguishing

In considering the problem of predicting stochastic ou ) . ;
breaks in the MSI model, we wish to compute the transition€ C€nter poink;, the BE region includes a neighborhood of

from a small amplitudgSA) oscillation to a large amplitude Fadiuse that has a probability greater than a given threshold.
(LA) outbreak in a time series, such as the one generated Motice that t.hIS'IS not the only' region in which transition

Fig. 1. The inset shows the deterministic periodic orbits of°CCUrs. Monitoring the BE region alone, therefore, is not
SA and LA, although noise may generate much larger outSufficient for prediction of transitionf27]. However, it can

breaks than the deterministic LA orbit. Stochastic perturbaP® Used to determine other regions that are not obvious for

tions of SA in the inset are approximately the same ampliiransition to an outbreak. _ ,
We can use the BE region as a first guess to monitor the

tude, and therefore are used as a threshold to define large . :
outbreaks. The mass flux entries generated by(@qan be ~dynamics. Letx, < E be the current point of the observed
combined with the invariant density to generate the condidynamics, and,_a desired target pointin the transport space
tional probability of transition from se; to B;, givenB, A Close to the image oE, but in a region of lower transition

representation of the transition probability is depicted in Fig.Probability. The relationship between the current point in the

2. Notice that the most active transport regions lie close to &AECtOryXo and the center of the bull's ey is xo=x.+y
stable manifold of an LA orbitperiod 3 saddlgin the un-  0F Somey. To move the image of, closer to the target point
derlying deterministic system. This stable manifold is theX.» We activate the control parametein Eq. (4). By Taylor
deterministic basin boundary which separates thejkiod ~ €XPansion abouk(x;, u) whenh=0 and ignoring higher or-

2) and LA (period 3 regular orbits of Eq(4), and the col- der terms, we solve

qring denotes the degree apd Iocat'ion where this pseudobar- %= F(xe, 1) = ,F (X, M)Y]T%F(XO,U«)

rier is overcome due to noise. Notice that near each of the h= 19 F oo , (10
basin boundary saddles of period 3, transition to an outbreak w e

is likely. However, the highest transition region is not nearassumingy,F(x., ) # 0. This control strategy is designed to
any saddle. Rather, the probability of an outbreak in thigarget a desired region of lower probability, given the iterates

allows one to generate finite dimensional projections o
transport by computing the X N matrix entries of a transi-
tion probability matrix[8,15 given by the equation
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FIG. 2. (Color) The GTM result of the conditional probability of transition from small amplitudes to large outbreaks using the same
parameters as in Fig. 1. The highest probability regions of trangmatpoint to a bull’'s eye monitoring region for control. Overlaid are the
stable and unstable manifolds corresponding to the underlying deterministic model.

land in a region of high transition probability. of the success of this algorithm is shown in Fig. 5. On aver-
Now we apply control to suppress large amplitude out-age, perturbations are applied 25-30 % of the time. Notice
breaks. Focusing on points in a neighborhood of the BE rethe maximum amplitude in comparison to the uncontrolled
gion has the disadvantage that the valued afe already dynamics of Fig. 1. For this example, the Lyapunov expo-
fairly large. Therefore, we use the detection region of thenents are\;=0.0794 and\,=-0.3764, where the maximum
neighborhood around thédeterministi¢ preimage of the exponent has been significantly decreased.
bull's eye, F "Y(E, u), shown as an ellipse in Fig. 4. Using
Eq. (10), the image of the ellipsé,, is found to be the figure
eight shown in Fig. 4. We targeted a regionljpwhich is
close to the BE region but has a very low transition probabil-  Stochastic bursting is present in many systems that are
ity. Our techniques successfully steer trajectories away fronbased on population dynamic modeling. In general, when
the bull's eye region towards SA behavior by using onlysuch systems are subject to periodic forcing, there exist pa-
vaccine perturbations that control the flow of susceptiblesameter regions in which multiple attractors coexist. Typi-
about some mean value. cally, one of these attractors arises from periodically forced
One advantage of choosing the detection region to be thequilibrium, and therefore, is typically of small amplitude.
preimage of BE is for relatively low values for the number of On the other hand, the other attractors bifurcate from saddle
infected individualg(l), a prediction can be made about the node orbits, which tend to be of larger amplitude. Such
future increase and steps can be taken to avert these dynabistable systems can have a simple manifold structure, but
ics. The perturbations represent a vaccination program, takvhen considered in the presence of stochastic fluctuations,
ing the form of u,ew=u[1+h(t)]. If his negative, then more they may exhibit complex mixing between the bistable at-
vaccinations are required to reduce the rate of susceptiblgactors, coupled with complicated looking transients be-
individuals being introduced into the population. An exampletween the basins.

V. DISCUSSION
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FIG. 3. (a) An uncontrolled time series of infective fraction as a function of tif¢ Constant vaccine control to reduce the rate of input
of susceptibles.

By using the PDF flux, we are able to distinguish regionsused in other chaos control schemes that are deterministic
in the small amplitude basin that are quite sensitive to stofi.e., [28,29). To our knowledge, we are not aware of any
chastic effects. We use this information in a control algo-stochastic chaos control methods that account specifically for
rithm to prevent bursting dynamigshat is, to control sto- the emergent effects of stochastic perturbations.
chastic chaos It monitors this sensitive region and adjusts
one physically relevant parameter to keep trajectories in the
SA basin. This idea of monitoring kss regionhas been a)
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0]
0 1000 2000 3000 4000 5000
time

O
~
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control (h)

e ~0.03
-3.0 -27 -2.4 0 1000 200’[0' 3000 4000 5000
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FIG. 4. Temporal average of those iterates leading to outbreaks

in the next iterate using the same parameters as in Fig. 1. Notice the FIG. 5. Stochastic control to suppress large outbreaks in the
agreement with the spatial average in Fig. 3. The ellipse bounds th€ISI model.(a) Infectives with suppressed outbreaks due to control
detection region. The figure eight curve is the image of the ellipsen the influx of infectives.(b) Perturbationsh to the susceptible
with controlled targeting. input ratew in Eq. (4).
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0.14 ' ; ' ; trigger an earlier, but smaller, outbreak. To understand this,
we consider the MSI model, but transformed and scaled, so
0.12} 1 that the steady state equilibrium in the absence of forcing is

now at the origin, and we examine the conservative system
in the absence of damping as wgs(0],

0.1
g X' ()= -y,
$0.08f (12)
o y'(©)=mx(1+y).
@
80067 In Eq. (11), x is a scaled susceptiblg,is a scaled infec-
R tive, the equilibrium is at the origin, and the frequencis a

0.04} 1 function of the epidemiological parameters. Notice that since
) the population is assumed to be constant, inthe absence of
any infectives[y=-1 in Eq. (11)], the fraction of suscep-

0.02f 1 1 _ ; 7. . .
el L, tibles slowly increases. In addition, all oscillatory solutions
., cees, must lie on level curves to the Lyapunov functiovix,y)
% 0.2 0.4 0.6 0.8 1 =SX+2y=21In(y+1). -
% missed detections Now suppose we have a small amount of infectives im-

. o o posed by a strong level of vaccine. Then the infectives will
FIG. 6. A plot showing C?ptlleEd pl’(f.‘dlCtabl'lty. Plotted are the Stay small for a |0ng period of time, until enough suscep-
false alarm rates versus missed detections. tibles grow to cause an outbreak of very large amplitudes by

One concern with a probabilistic detection scheme is thaf®MiNg in contact with a few infectivef31]. That is, an

it is dependent on the choice of the monitoring region used)utbreak will not occur unless the susceptibles reach a criti-
for transition to an outbreak. Two issues with taking an ac-CaI level in a long time scale while in the presence of a small

tual time series and using the monitoring scheme above igaction of infectives. To be specific, suppoye-1+ce,

that it may miss an outbreak that is théneissed detection whe_rec>0 IS constant. Thely =XCe. If x<0, then the in-
or it may predict an outbreak that does not occur. TheséeCt'Ves decrease further, implying a much larger outbreak at

statistics depend heavily on the size of the monitoring oné later t'.me' Thereforg, if one increases the |'nfect|ves', the
uses. To see this in Fig. 6, we change the radius around of thsé/Stem fires sooner, with a smaller outbreak,_smc_e the infec-
center of the bull's eye and the radius around its preimage VeS aré pushed further away from the invariant live-1.
Each dot plotted in Fig. 6 is for a different radius. The small-, hen the controh IS adjgsted so that Itis positive, the effecfc
est radii are represented by the data points on the right Ag to cause an increase in the rate of infectives, thus reducing
we increase the radii, the data points move along the curve t nglz?l of tlhf] outr?rehak. . 1l . d

the left. The false alarms are those outbreaks predicted by th inally, althoug t € vaccine contro . uctu_atlons 0 not
bull's eye, but do not occur. The missed detection are th ecrease the mean |_nC|denc_e levels of |nfect|on, the_ control
bursts that occur but are not predicted by the maximum flufnay be combined with tracking method_s for ep|dem|c con-
hypothesis. It is the percentage not detected. trol [26] to reduce the mean reproductive rate of infection

The choice we made for the detection region has solel elow threshold to kill off the disease without causing un-
yvanted outbreaks during vaccination.

been guided by time series observations and PDF flux pr
dictions. It has not been optimized for the minimum number
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